Irodalmi hivatkozások

[1] Utkin, V. I.. Variable Structure Control Optimization. 1992. Springer-Verlag.

[2] Young, K. D.. Controller Design for Manipulator using Theory of Variable Structure Systems. Vol SMC-8. 101-109. 1978. IEEE Trans. on System, Man, and Cybernetics.

[3] Harashima, F.; Ueshiba, T.; Hashimoto H.. 2nd Eur. Conf. On Power Electronics, Proc., pp 251-256. Grenoble. . Sliding Mode Control for Robotic Manipulators". 1987.

[4] Hashimoto H.; Maruyama, K.; Harashima, F.: ". Microprocessor Based Robot Manipulator Control with Sliding Mode". 34. 1. 11-18. 1987. IEEE Trans. On Industrial Electronics.

[5] Sabanovics, A.; Izosimov, D. B.. Application of Sliding Modes to Induction Motor. 17. 1. 4149. 1981. IEEE Trans. On Industrial Appl..

[6] Vittek, J., Dodds, S. J.. EDIS – Publishing Centre of Zilina University, ISBN 80-8070-087-7. Zilina. Forced Dynamics Control of Electric Drive. 2003.

[7] Utkin, V.I.; „Sabanovic, A.. Sliding modes applications in power electronics and motion control systems. Volume of tutorials. TU22 - TU31. 1999. Proceedings of the IEEE International Symposium Industrial Electronics.

[8] Sabanovic, A. The 29th Annual Conference of the IEEE Industrial Electronics Society, IECON '03, Vol. 1, Page(s):997 - 1002. . Sliding modes in power electronics and motion control systems. 2003.

[9] Siew-Chong Tan; Lai, Y.M.; Tse, C.K.. 37th IEEE Power Electronics Specialists Conference, PESC '06. Page(s):1 - 7. . An Evaluation of the Practicality of Sliding Mode Controllers in DC-DC Converters and Their General Design Issues. 2006.

[10] P. Korondi, L. Nagy, G. Németh. EPE'91 4th European Conference on PowerElectronics, Proceedings vol. 3. pp. 3-180-184. Firenze. . Control of a Three Phase UPS Inverter with Unballanced and Nonlinear Load. 1991.

[11] P. Korondi, H. Hashimoto. Springer-Verlag. . Park Vector Based Sliding Mode Control K.D.Young, Ü. Özgüner (editors) Variable Structure System, Robust and Nonlinear Control.ISBN: 1-85233-197-6. 197. 6. 1999. Springer-Verlag.

[12] Slotine,J.J.. Sliding Controller Design for Non-Linear Systems. 40. 2. 421-434. 1984. Int. Journal of Control.

[13] Sabanovic A., N. Sabanovic. K. Jezernik, K. Wada. The Third Worksop on Variable Structure Systems and Lyaponov Design . Napoly, Italy. Chattering Free Sliding Modes. 1994.

[14] Korondi, H.Hashimoto, V.Utkin . Direct Torsion Control of Flexible Shaft based on an Observer Based Discrete-time Sliding Mode. 2. 291-296. 1998. IEEE Trans. on Industrial Electronics.

[15] Boiko, I.; Fridman. L Frequency Domain Input–Output Analysis of Sliding-Mode Observers. 51. 11. 1798-1803. 2006. IEEE Transactions on Automatic Control.

[16] Comanescu, M.; Xu, L.. Sliding-mode MRAS speed estimators for sensorless vector control of induction Machine. 53. 1. 146 – 153 . 2005. IEEE Transactions on Industrial Electronics.

[17] P. Korondi, J-X. Xu, H. Hashimoto. 8th Conference on Power Electronics and Motion Control Vol. 5, pp.5-254-5-259. . . Sector Sliding Mode Controller for Motion Control. 1998.

[18] Furuta.K. , Y.Pan. Variable structure control with sliding sector. 36. 211-228. 2000. Automatica.

[19] Suzuki S, Pan Y, Furuta K. VS-control with time-varying sliding sector - Design and application to pendulum. 6. 3. 307-316. 2004. ASIAN JOURNAL OF CONTROL.

[20] Korondi Péter. Tensor Product Model Transformation-based Sliding Surface Design. 3. 4. 23-36. 2006. Acta Polytechnica Hungarica.

[21] Vadim Utkin, Hoon Lee. The Chattering Analysis. 2006. EPE-PEMC Proceedings 36.

[22] Furuta, K.. Sliding Mode Control of a Discretee System. 14. 145-152. 1990. System Control Letters.

[23] Drakunov, S. V.; Utkin, V. I.. Sliding Mode in Dynamics Systems. 55. 1029-1037. 1992. International Journal of Control.

[24] Koshkouei, A.J.; Zinober, A.S.I.. Robust frequency shaping sliding mode control” Control Theory and Applications. 147. 3. 312 – 320. 2000. IEE Proceedings.

[25] HASHIMOTO, H., and KONNO, Y.. ‘Sliding surface design in thefrequency domain’, in ‘Variable Structure and Lyapunov control’,ZINOBER, A.S.I. (Ed.) (), . 75-84. 1994. Springer-Verlag, Berlin.

[26] P.Korondi, H.Hashimoto. Sliding Mode Design for Motion Control. 16. 2000.

[27] Koshkouei, A.J.; Zinober, A.S.I.. Proceedings of the 39th IEEE Conference on Decision and Control, pp. 4765 – 4770. . Adaptive backstepping control of nonlinear systems with unmatched uncertainty. 5. 2000 .

[28] Kaynak, O.; Erbatur, K.; Ertugnrl, M.. The fusion of computationally intelligent methodologies and sliding-mode control-A survey. 48. 1. 4 – 17. 2001. IEEE Transactions on Industrial Electronics.

[29] Lin, F.-J.; Shen, P.. H Robust Fuzzy Neural Network Sliding-Mode Control for Two. 53. 4. 1209 – 1225 . 2006. Axis Motion Control System IEEE Transactions on Industrial Electronics.

[30] D. C. Biles And P. A. Binding. On Carath_Eodory's Conditions For The Initial Value Problem. 125. 5. 1371{1376 S 0002-9939(97)03942-7 . 1997. Proceedings Of The American Mathematical Society.

[31] Filippov, A.G.. 1st IFAC Congr., pp. 923-925. Moscow. . Application of the Theory of Differential Equations with Discontinuous Right-hand Sides to Non-linear Problems in Automatic Control. 1960.

[32] Filippov, A.G.. Differential Equations with Discontinuous Right-hand Side. 42. 199-231. 1964. Ann. Math Soc. Transl..

[33] Satoshi Suzuki, Yaodong Pan, Katsuhisa Furuta, and Shoshiro Hatakeyama. Invariant Sliding Sector for Variable Structure Control. 7. 2. 124-134. 2005. Asian Journal of Control.

[34] Xu JX, Lee TH, Wang M. Design of variable structure controllers with continuous switching control. 65. 3. 409-431. 1996. INTERNATIONAL JOURNAL OF CONTROL.

[35] Young, K. D.; Kokotovič, P. V.; Utkin, V. I.. A Singular Perturbation Analysis of High-Gain Feedback Systems. AC-22. 6. 931-938. 1977. IEEE Trans. on Automatic Control.

[36] K. Saito, K. Kamiyama, T. Ohmae, és T. Matsuda. A microprocessor-controlled speed regulator with instantaneous speed estimation for motor drives. 35. 1. 95-99. Feb. 1988. IEEE Trans. Ind. Electron..

[37] C. Chan, S. Hua, és Z. Hong-Yue. Application of fully decoupled parity equation in fault detection and identification of dcmotors. 53. 4. 1277-1284. June 2006. IEEE Trans. Ind. Electron..

[38] F. Betin, A. Sivert, A. Yazidi, és G.-A. Capolino. Determination of scaling factors for fuzzy logic control using the sliding-mode approach: Application to control of a dc machine drive. 54. 1. 296-309. Feb. 2007. IEEE Trans. Ind. Electron..

[39] M. Boussak és K. Jarray. A high-performance sensorless indirect stator flux orientation control of industion motor drive. 53. 1. 614-623. Feb. 2006. IEEE Trans. Ind. Electron..

[40] J. Moreno, M. Ortuzar, és J. Dixon. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks. 53. 2. 614-623. Apr. 2006. IEEE Trans. Ind. Electron..

[41] R.-E. Precup, S. Preitl, és P. Korondi. Fuzzy controllers with maximum sensitivity for servosystems. 54. 3. 1298-1310. Apr. 2007. IEEE Trans. Ind. Electron..

[42] V. Utkin és K. Young. Methods for constructing discountnuous planes in multidimensional variable structure systems. 31. 10. 1466-1470. Oct. 1978. Automat. Remote Control.

[43] K. Abidi és A. Sabanovic. Sliding-mode control for high precision motion of a piezostage. 54. 1. 629-637. Feb. 2007. IEEE Trans. Ind. Electron..

[44] F.-J. Lin és P.-H. Shen. Robust fuzzy neural network slidingmode control for two-axis motion control system. 53. 4. 1209-1225. June 2006. IEEE Trans. Ind. Electron..

[45] C.-L. Hwang, L.-J. Chang, és Y.-S. Yu. Network-based fuzzy decentralized sliding-mode control for cat-like mobile robots. 54. 1. 574-585. Feb. 2007. IEEE Trans. Ind. Electron..

[46] A. G. Filippov. 1st IFAC Congress. . Application of the theory of differential equations with discontinuous right-hand sides to non-linear problems in autimatic control. 923-925. 1960.

[47] A. G. Filippov. Differential equations with discontinuous right-hand side. 42. 199-231. 1964. Ann. Math Soc. Transl..

[48] Van, Doren és Vance J.. Control Engineering. Red Business Information. Loop Tuning Fundamentals. July 1, 2003.

[49] Imecs, Mária. A 2. Báthory-Brassai Konferencia - Nemzetközi Interdiszciplináris Gazdasági, Műszaki, és Történelmi Konferencia. Balatonlelle. . Villamos Gépek Egységes Szabályozási Elve A Térfázor Elmélet Alapján. 2011.

[50] Kovács, K. P. és Rácz, I.. Akadémiai Kiadó. Váltakozóáramú gépek tranziens folyamatai. 40-42. 1954.

[51] Kelemen Árpád, Imecs. OMIKK Kiadó. Vector Control of AC Drives. 1991.

[52] Gyula, Retter. Akadémiai Kiadó. Matrix and space-phasor theory of electrical machines. 1987.

[53] Sándor, Dr.. Tankönyv Kiadó. Automatizált villamos hajtások I.. 1989.

[54] De Doncker, Rik,. Springer-Verlag. Advanced Electrical Drives. 2011.

[55] al., B.. Springer-Verlag. Vector Control of Induction Machines, Power Systems. 2012.

[56] Bettini, A.,. Comparison of different schemes without shaft sensors for field oriented control drives. IEEE Press. 1994. Sensorless control of AC motor drives.

[57] Ambrožič, V.,. 5th International Simposium on New Technologies (SONT). Poreč, Croatia. . Sensorless Control of Induction Machine - A Possible Approach. 1995.

[58] Conroy, B.. 6th European Conference on Power Electronics and Applications (EPE). Sevilla, Spain. . Application of Encoderless Vector Control Techniques in a Medium Performance Induction Motor Drive. 1995.

[59] vas, Peter. Oxford University Press. Sensorless vector and direct torque control. 1998.

[60] Kalman, Rudolf. A New Approach to Linear Filtering and Prediction Problems. 1960. Transaction of the ASME—Journal of Basic Engineering.

[61] Skogestad, Sigurd és Postlethwaite, Ian. John Wiley & Sons. Chichester. Multivariable Feedback Control Analysis and Design. 2005.

[62] Simon, Dan. John Wiley & Sons. Cleveland State University. Optimal State Estimation, Kalman, H∞, and Nonlinear Approaches. 2006.

[63] Fodor D., Vajda. Extended Kalman filter based speed sensorless ac motor control with parameter estimation. 2002. EPE – PEMC Dubrovnik.

[64] Burl, Jeffrey. Addison-Wesley. Menlo Park. Linear Optimal Control. 1999.