A dinamikus jelenségek leírására közönséges vagy parciális differenciál-egyenleteket használunk. Az egyenletek alakja és struktúrája, a bennük szereplő paraméterek általában nem ismertek teljesen pontosan vagy ha azok időben változnak, a változásuk általában nem ismert.
Mivel a valódi rendszer modelljének pontos alakja a gyakorlati feladatokban nem ismert, s emiatt helyette annak közelítő, úgynevezett névleges (nominális) modelljét használjuk. A modell és a valós rendszer közötti eltérést okozzó hatások modellezésekor célszerű megkülönböztetni az állandóan jelen levő modell bizonytalanságot a külső zavarástól. Zavarások (disturbances) körébe tartozik tipikusan a rendszerre ható külső zavarás, az irányítójel hibája, a mérési zaj. Az irányítás célja, hogy a zavarások hatását csökkentse a mérnöki szempontból érdekes (esetleg fiktív) kimenő jelekre -- ez egy tipikus performancia követelmény.
Modell bizonytalanság (uncertainty) a modellben meglevő parametrikus bizonytalanságok és a nem modellezett dinamika hatása. Egy speciális eset a qLPV modellek ütemezési változói, amik ismertek a végrehajtás során de nem ismertek tervezéskor: a tervezés számára bizonyos szempontból bizonytalan paraméterként viselkednek. Az irányítás célja stabilitás és performancia garantálása adott nagyságú feltételezett modell bizonytalanság mellett.
Kétféle modell-bizonytalanságot különböztethetünk meg: strukturális és strukturálatlan modell-bizonytalanságot. A struktúrált bizonytalanság modellezésekor a bizonytalansági blokk struktúrálása (például blokk-diagonális) növelheti a modell pontosságát és használhatóságát az irányítás-tervezés szempontjából. Tipikusan struktúrált a grey-box modellezés során kapott modellben előforduló paramétereknek a bizonytalansága: a paraméter értéke pontosan nem ismert, de a bizonytalanság mértéke általában jól becsülhető.
Nemmodellezett dinamika
A mechanikai rendszerek irányítására alkalmazott lineáris vagy folytonos nemlineáris irányítási algoritmusokkal megvalósított szabályozási rendszer tulajdonságait nagymértékben leronthatják a mechanikai rendszerben jelenlevő (nemfolytonos) nemlinearitások. Tipikus nemlinearitások a szaturáció, surlódás,holtsáv, kotyogás, hiszterézis.
Számos irányítási alkalmazásnál az irányított rendszerben a nemlinearitás pontatlanul ismert vagy akár ismeretlen. Ha a linearizáláson alapuló technika kevésbé alkalmazható, a nemlinearitás hatásának kompenzálásához a szabályozót módosítani kell. Az alkalmazott technika alapján ez lehet robusztus szabályozás, amikor a szabályozót úgy tervezzük meg, hogy pontatlanul ismert nemlinearitás esetén is garantálja a zárt rendszer stabilitását és a szabályozási pontosságot, performanciát, vagy adaptív szabályozás, amikor a szabályozót kibővítjük olyan formában, hogy irányítás közben becsülje meg az ismeretlen nemlinearitást, paramétert.
A modell és a rendszer közötti hiba meghatározására általános megoldás nincs, különböző szerkezetű lehetőségek közül az additív, illetve a multiplikatív hiba struktúra a legismertebb.
A aktuális rendszer és a
névleges rendszer közötti eltérést additív hiba struktúrának nevezzük, ha a következő összefüggés teljesül:
|
(51) |
ahol az additív hiba átviteli függvénye. Az additív hiba ismeretlen.
A ismeretlen méretű additív hiba átviteli függvényt egy ismert korláttal rendelkező
bizonytalansággal kifejezhetjük és frekvencia függvényét Nyquist diagramon ábrázolhatjuk:
|
(52) |
ahol skalár függvény. Az aktuális
rendszer Nyquist diagramja a névleges
rendszer Nyquist diagramjával és a bizonytalanságot leíró
függvénynyel illusztrálható.
A aktuális rendszer és a
névleges rendszer közötti eltérést multiplikatív hiba struktúrájúnak nevezzük, ha a következő összefüggés teljesül:
ahol a multiplikatív hiba átviteli függvénye.
A ismeretlen méretű additív hiba átviteli függvényt egy ismert korláttal rendelkező
bizonytalansággal kifejezhetjük és frekvencia függvényét Bode diagramon ábrázolhatjuk:
|
(53) |
ahol skalár függvény. Az aktuális
rendszer Bode diagramja a névleges
rendszer Bode diagramjával és a bizonytalanságot leíró
függvénnyel illusztrálható.
Parametrikus bizonytalanság
Gyakran a bizonytalanságok egy része a rendszert leíró modell paramétereinek változásával is megfogalmazható.
Például az rendszermátrixban lévő
rugóállandó és
csillapítási együtthatók változnak. Ezek a paraméterek a mátrix több elemében is előfordulhatnak.
A bizonytalan rugóállandó paramétere a következőképpen modellezhető:
|
(54) |
ahol a névleges rugóállandó,
a névleges értéktől való eltérést mutatja, míg
paraméterről azt tudjuk, hogy a
intervallumba esik. A bizonytalan rugóállandó
struktúrája a 11. ábrán látható.
A jelek közötti kapcsolatok:
|
(55) |
ahol . Emiatt
. Az ismert komponenseket tartalmazó blokk:
Ha egy bizonytalan paraméter a nevezőben van, akkor a következőképpen járunk el.
|
(56) |
ahol a névleges tömeg,
a névleges értéktől való eltérést mutatja, míg
paraméterről azt tudjuk, hogy a
intervallumba esik. A bizonytalan rugóállandó
struktúrája a 12. ábrán látható.
|
(57) |
A jelek közötti kapcsolatok:
|
(58) |
ahol . Mivel
, ezért
.
Emiatt . Az ismert komponenseket tartalmazó blokk:
.
A szabályozott rendszer komponensei az előzőek alapján a modell és a szabályozó, valamint a minőségi specifikációkkal és bizonytalanságokkal kapcsolatos információk. A 13. ábrán látható úgynevezett struktúrájú modellt használjuk a szabályozó tervezéséhez.
|
(59) |
Ha figyelembe vesszük a szabályozó hatását, azaz az irányítójel és a mért jel közötti kapcsolatot , akkor az úgynevezett M-
struktúrához jutunk.
A 14 ábrán látható modellt a szabályozott rendszer elemzéséhez használjuk.
|
(60) |
Mivel a rendszerre ható külső körülmények változhatnak, valamint az érzékelők és beavatkozó szervek tulajdonságai is módosulhatnak, kisebb hibák léphetnek fel, stb. szükség van rekonfiguráló és hibatűrő irányítások tervezése. Ezen a tulajdonságok az elérésének egy módja lehet növelni a szabályozó robusztusságát ezekre a tényezőkre és a modellezési hibákra. Az alábbiakban a feladat megoldásának ezt a stratégiáját fejtjük ki részletesebben.
A szabályozási feladatot az 15 ábrán bemutatott struktúrában fogalmazzuk meg amit az alábbi egyenletek írnak le
|
(61) |
ahol jelek a bizonytalanságok leírására szolgálnak,
az általánosított rendszerstruktúra zavarás és performancia jelei,
a szabályozó bemenet és a mért kimenet.
A bizonytalansági halmaz, , stabil átmenetfüggvényekből áll. A perturbált kör a
|
(62) |
bizonytalanság hatására lakul ki, ahol és alakja a következő:
|
(63) |
|
(64) |
Az szabályozót a nominális (perturbálatlan) rendszerre kötve kapjuk, hogy
|
(65) |
|
(66) |
A szabályozott, , és perturbált,
, kör alakja
|
(67) |
Mivel a zárt körök jól definiáltak kell, hogy legyenek és nem függhetnek és
sorrendjétől, néhány feltételezéssel kell élnünk:
1. Létezik szabályozó, ami stabilizálja a nominális (
) rendszert (
).
2. A bizonytalansági halmaz
|
(68) |
ahol komplex mátrixok egy halmaza, ami tartalmazza
-t, ami meghatározza a bizonytalanságok méretét és struktúráját. Feltesszük, hogy ez a halmaz csillag alakú, vagyis
minden
esetén.
3. A bizonytalanságok és az általánosított rendszerstruktúra kötése jól definiált, vagyis invertálható minden
esetén.
Ezek a feltételek jórészt automatikusan teljesülnek a szokásos, intervallum, gömb, stb. típusú bizonytalansági halmazokra.
Általában normalizáló súlyozásokat alkalmazunk, amit azután figyelembe veszünk összeállításánál: ha
bizonytalansággal akarunk dolgozni, ahol
valós racionális
és
súlyokkal, akkor
helyett
rendszert kell tekintenünk, ahol
|
(69) |
Vezessük be a
|
(70) |
jelölést, ahol a bizonytalanság által látott átviteli függvény.
Tétel 4.1
Ha
stabilizálja
-t és ha
minden
esetén stabilan invertálható akkor
robusztusan stabilizálja
-t a
bizonytalanságra nézve.
A gyakorlatban azt kell leelenőrizni, hogy stabilisan invertálható, vagyis
minden
esetén. Ez a feladat bonyolult, mivel az egész jobb fél síkon kell a feltételt ellenőrizni.
A következő állítás megmutatja, hogy általában elég invertálhatóságát a komplex tengelyen (
, ahol
) ellenőrizni és elegendő csak a
halmazra.
Tétel 4.2
Tegyük fel, hogy
egy stabil átviteli mátrix.
Ha minden
esetén, akkor
stabilisan invertálható minden
esetén.
A fenti két állítást összegezve kapjuk a következő robusztus stabilitási eredményt:
Következmény 4.1
Ha
stabilizálja
-t és
minden
és minden
esetén, akkor
robusztusan stabilizálja
-t a
bizonytalansági halmazra nézve.
A fordított állítás általában nem igaz. Egy konkrét esetben a teszt nem konzervatív voltát megpróbálhatjuk úgy igazolni, hogy egy destabilizáló perturbációt keresünk.
A robusztus stabilitási analízis egy alapvető eszköze a kis erősítések tétele, ami kimondja, hogy ha a hurokátviteli szorzat normája egynél kisebb, akkor a visszacsatolás stabilis. Ez az eredmény a fixpont tétel egy következménye.
Egy rendszert, ahol
egy Banach tér (például
vagy
)) kontraktív, ha a (Lipschitz) indukált normája
-nél kisebb, azaz létezik
úgy, hogy
|
(71) |
minden esetén. A fixpont tétel alapján egy kontraktív
rendszerhez létezik és egyértelmű
amire
.
Tétel 4.3 (Kis erősítések tétele)
Tegyük fel, hogy a
valamint a
rendszereknek véges erősítése van, amire
.
Ekkor a visszacsatolt kapcsolat stabilis, azaz minden esetén létezik es egyértelmű
, lásd a 16 ábrát.
A gyakorlatban sokszor az eredeti visszacsatolás nem teljesíti a tétel feltételeit. Ilyenkor a zárt kör stabilitását megkaphatjuk a kis erősítések tételének alkalmazásával egy módosított elrendezésre, aminek a stabilitási tulajdonságai viszont azonosak az eredeti rendszerével.
A leggyakrabban alkalmazott transzformáció stabilan invertálható súlyfüggvényeket alkalmazva módosítja a kapcsolást az 17 ábrán látható módon.
Következmény 4.2
Legyen
stabil rendszer. Ekkor a visszacsatolt rendszer stabilis ha létezik egy
,
stabilis rendszer úgy, hogy
.
Definiáljuk a
|
(72) |
halmazt. A kis erősítések tételét alkalmazva megkaphatjuk a -ra vonatkozó robusztus performancia eredményt:
• invertálható és
minden
esetén,
akkor és csak akkor ha a robusztus stabilitási feltétel minden -ra fennáll, ahol
és
, lásd az 17 ábrát, azaz
• invertálható minden
esetén,
ahol .
Megvizsgálva, hogy
|
(73) |
adódik, hogy
|
(74) |
invertálható ha
invertálható. Feltevéseink szerint
.
válasszuk -t. Ekkor
|
(75) |
invertálható, tehát invertálható minden
esetén.
Mivel invertálható, a kis erősítések tételéből következik, hogy
minden
esetén.
Összefoglalva: a robusztus performancia ekvivalens egy robusztus stabilitási feladattal, ami egy nomináis zárt körre és struktúrált bizonytalanságra vonatkozik, lásd a 19, ábrát. Mivel a bizonytalansági halmaz struktúrált, a kis erősítések tételénél kevésbé konzervatív eredmények keresése válik szükségessé.
A bizonytalan rendszereket egy nominális LTI rendszer és egy visszacsatolt bizonytalan blokk együttesével modellezzük, ahol először a bizonytalansági halmazra az operátor egységgömböt választottuk. Ez az eset jól kezelhető a kis erősítések tételével. A továbbiakban ezt a technikát terjesztjük ki más szerkezetű bizonytalansági halmazok esetére.
Egy igen fontos struktúrált bizonytalansági osztály a blokk diagonális bizonytalanságok halmaza. Blokk diagonális bizonytalansági struktúrák létrehozásának egyik módja az egyes bizonytalanságok kiemelése a rendszerből és az így kapott összekötés LFT alakra való hozása.
A továbbiakban azt az elvet illusztráljuk egy néhány konkrét példán keresztül.
Példa 4.1 Input-output multiplikatív bizonytalanság:
|
(76) |
|
(77) |
A kiemelésének menete:
• elkülönítése:
|
(78) |
|
(79) |
• elkülönítése:
|
(80) |
|
(81) |
Példa 4.2: Faktorizált bizonytalanság ( invertálható):
|
(82) |
|
(83) |
Az alábbi relációk
|
(84) |
felírhatók mint
|
(85) |
amiből -t eliminálva és figyelembe véve, hogy
adódik
|
(86) |
Parametrikus bizonytalanságokra tekintsük az alábbi példákat:
Példa 4.3: Tekintsük a rugózott tömeg moddeljét: .
|
(87) |
A bizonytalan rugóállandó (additív bizonytalansági modell).
Ekkor az állapotegyenletek
|
(88) |
|
(89) |
|
(90) |
|
(91) |
|
(92) |
Példa 4.4: Tekintsük az 4.4 ábrán látható tömeg-csillapító-rugó rendszert ( tömeg,
csillapítási együttható,
rugóállandó).
Differenciálegyenlete:
|
(93) |
ahol a tömeg elmozdulása,
erő a rendszer gerjesztése.
A blokkdiagram a rendszer névleges modelljét illusztrálja. A valós rendszerben a fizikai paraméterek egyrészt nem ismertek pontosan, másrészt üzem közben változnak. Ismerjük viszont ezek átlagos értékét és becslésünk van az átlagos értéktől való eltérésükre.
|
(94) |
|
(95) |
|
(96) |
A példában legyenek ,
,
a névleges értékek,
,
,
és
reprezentálja, hogy a rendszer modellje, csillapítása és rugóállandója rendre
,
,
bizonytalanságú.
A parametrikus bizonytalanságok a következőképpen írhatók fel:
|
(97) |
|
(98) |
|
(99) |
ahol ,
,
Megjegyzés: A kapcsolatokat felső bizonytalanság blokkal vettük figyelembe. A rendszer jelei közötti összefüggések ezek szerint a következőképpen alakulnak:
|
(100) |
ahol
|
(101) |
|
(102) |
|
(103) |
|
(104) |
|
(105) |
továbbá és
.
Válasszuk az állapotokat a következőképpen:
, ,
, azaz
.
|
(106) |
|
(107) |
|
(108) |
Ezek után felírhatjuk a parametrikus bizonytalanságokat tartalmazó rendszer modelljét:
|
(109) |
A lengőrendszer modellje kizárólag az ismert
,
,
névleges paraméterektől és az ismert
,
,
bizonytalnsági felső becslésektől függ. Így
ismert és nem tartalmaz bizonytalanságokat.
|
(110) |
ahol ,
,
,
, ,
,
, ,
.
A bizonytalanságokat tartalmazó paramétereket egy külön blokk tartalmazza.
|
(111) |
A bizonytalan paraméterek hatása a 4.4 ábrán látható Bode diagramokon jól láthatók.
A modellezés célja, hogy megkapjuk az általánosított rendszer struktúrát, ahol az összes súlyfüggvény a általánosított rendszerbe van beillesztve, míg a bizonytalanságokat a blokk-diagonális
tartalmazza, ami egy
halmaz eleme, ahol:
|
(112) |
és ahol minden bokk normalizált.
Az mátrixok esetén a
struktúrált szinguláris érték definíciójában figyelembe veszünk egy feladatfüggő
bizonytalansági struktúrát, ami az adott probléma sajátosságaitól és performancia követelményeitől függ. A vizsgált struktúrák az egységgömb megszorítását jelentik valamely
tulajdonságok mentén, amikre feltesszük, hogy ha
-ra teljesül
, akkor
-ra is teljesülni fog minden
esetén, azaz
csillag szerkezetű (kúp).
Tipikus példa a tulajdonságra a blokk-diagonális struktúra, aminek két típusát tekintjük át: az ismédlődő skalár és teljes blokkú,
vagyis
|
(113) |
|
(114) |
ahol a nemnegatív és
egészek az ismétlődő skalár blokkok számát illetve a teljes blokkok számát jelentik.
Értelemszerűen fenn kell állnia az összefüggésnek. Az egyszerűség kedvéért a jelölésből elhagyjuk
-t.
Gyakran normakorlátos halmazzal van dolgunk
|
(115) |
Definíció 4.1 Az LTI operátorhoz rendelt és a
halmazra vonatkoztatott
struktúrált szinguláris érték
|
(116) |
ahol
|
(117) |
A definíció jelentése a visszacsatolt kör esetén kézenfekvő:
annak a struktúrált
bizonytalanságnak a normája ami destabilizálja a zárt kört.
A definíció egyenes következménye, hogy minden és
esetén
valamint
. Azonban, ha a blokkstruktúra nem triviális akkor
nem normája
-nek, mivel a háromszög egyenlőtlenség nem teljesül.
Bebizonyítható az alábbi egyenlőség:
|
(118) |
Valóban, minden esetén
, így csak két esetet kell vizsgálnunk:
akkor és csak akkor, ha
valamint
akkor és csak akkor, ha
. Ezek az esetek a definíció egyszerű következményei.
Ebből az egyenlőségből, a spektrálsugár és a függvények folytonosságából valamint
kompaktságából következik, hogy a
függvény folytonos.
Általában nem könnyű a értékét kiszámítani. A továbbiakban a
függvény néhány olyan tulajdonságát soroljuk fel, amit haszonnal lehet a számításokban és becslésekben felhasználni.
ha , általában
.
ha akkor
.
. ( az
spektrál sugara)
Valóban, ha akkor
és
esetén
, míg tetszőleges
esetén
.
Sajnos ezek a becslések általában nagyon durvák,mivel valamint
közti különbség tetszőlegesen nagy lehet. A becsléseket szűkíteni lehet
olyan transzformációinak a felhasználásával amik nem befolyásolják
értékét, azonban hatással vannak
és
értékére.
ahol
|
(119) |
|
(120) |
Valóban: mivel ahol
adódik, hogy
minden
-ra. Másrészt
ha
így
.
Ezért , vagyis
invariáns a diagonális skálázásra.
esetén a
|
(121) |
halmaz konvex.
Valóban:
|
(122) |
Az utolsó feltétel egy lineáris mátrixegyenlőtlenség (LMI), ami egy konvex feltétel -ben.
azon struktúrák esetén, amikre
:
.
Ha akkor az egyenlőség általában nem teljesül.
A leírtakat az alábbi példa szemlélteti: legyen és tekintsünk egy
|
(123) |
bizonytalansági halmazt. Mivel és
akkor
valamint
.
Mivel és
:
|
(124) |
Így .
Másrészt:
|
(125) |
ezért
|
(126) |
|
(127) |
ami ebben a speciális esetben igazolja az állítás helyességét.
Eddig komplex skaláris blokkokat tekintettünk. Azonban a parametrikus bizonytalanságok tipikusan valós értékűek, amit figyelembe kell vennünk.
|
(128) |
Ez a struktúra elvezet a kevert (valós/komplex) fogalmához. Ekkor a
skálázás alkalmazása helyett felső becslést kaphatunk a kevert
-re, ha az úgynevezett
skálázást használjuk:
|
(129) |
ahol
|
(130) |
|
(131) |
és .
Ez általában egy kvázi-konvex problémára vezet. Ha egy-rangú mátrix, akkor
megegyezik a felső becslésével.
A következő állítás alapvető szerepet játszik a alapú robusztussági analízisben. Tekintsük a
és
bizonytalanságokat valamint a következő blokk-diagonális
struktúrát:
|
(132) |
Tétel 4.4 (Fő hurok tétel)
|
(133) |
Tekintsünk most egy általánosított rendszerstruktúrát és egy stabilizáló
szabályozót, azaz
|
(134) |
és ahol
stabil bizonytalanság, amire
minden
esetén.
Ekkor a robusztusan stabilizál, ha
|
(135) |
minden esetén.
A szabályozó teljesíti a nominális performancia kritériumot,ha
|
(136) |
minden esetén.
A Fő hurok tétel alapján a performancia robusztus, ha
|
(137) |
minden esetén, ahol
.
Az analízis feltételek fényében egy robusztus stabilitást és performanciát garantáló szabályozó tervezéséhez minimalizálni kell egy struktúrált szinguláris értéket egy adott struktúrált bizonytalansági halmazon és minden frekvencián. Ez egy nemkonvex nemlineáris feladat, amire még nem született minden igényt kielégítő megoldó algoritmus. Egy, a gyakorlatban számos feladat esetében hatékonynak bizonyult heurisztikus algoritmus az úgynevezett -iteráció (vagy
iteráció, valós bizonytalanságok kezelése esetén).
Tekintsük az alábbi bizonytalansági struktúrát:
|
(138) |
|
(139) |
A -nek megfelelő
skálázó mátrixok halmaza
|
(140) |
Ekkor a -hoz rendelt skálázó mátrixok halmaza
Ezekkel a skálázó szűrőkkel
|
(141) |
így minden stabilizáló szabályozóra, ami teljesíti a
|
(142) |
feltételt minden esetén, garantált a robusztus performancia. Ezért a
-t direktbe optimalizáló szabályozó tervezése helyett a felső becslést minimalizáljuk a
segítségével.
Ezt a feladatot az alábbi kritérium fogalmazza meg: minimizáljuk
|
(143) |
minden -t stabilizáló
szabályozóra, és minden frekvencián a
-beli
skálázó mátrixokra. Ha ez a minimum kisebb mint egy, akkor a tervezés sikeres.
Sajnos az (143) feladatban nem tudunk egyszerre minimalizálni a szabályozó és frekvenciafüggő
skálázó mátrixok függvényében. Ezért egy iterációt alkalmazunk: fixen tartjuk a
skálát és (143) minimumát keressük a stabilizáló szabályozók halmazán. A második lépésben a
szabályozót tratjuk fixen és (143) minimumát keressük a
skálák függvényében. Ezt az eljárást nevezzük
-iterációnak, lásd még a 26 ábrát.
-iteráció algoritmusa:
Rögzítjük az iterációk maximális számát, MAXIT, és egy tolerancia szintet. Választunk egy
skálafüggvényt.
A rögzített -vel megkeressük
-t, az optimális
szabályozót amire
úgy, hogy fennáll a
becslés. Ha
a keresett robusztus szabályozó, ha nem, akkor tovább megyünk a
. lépésre.
Rögzített szabályozóval egy új
skálázó szűrőt számolunk ki, minimalizálva
értékét
függvényében.
Amennyiben minden frekvencián
akkor
a keresett robusztus szabályozó, ha nem, tovább megyünk a
. lépésre.
Ha elértük MAXIT-et, akkor az algoritmus nem szolgáltatott megoldást. Ellenkező esetben tovább megyünk az . lépésre.
Az első lépés egy standard optimális szabályozási feladat megoldása. A második lépésben minimalizálni kell
értékét, amit egy numerikus optimalizálással érünk el egy
rácson, ahol a racionális
skálázó szűrőt közelítjük. A közelítés pontossága általában növeli a szűrő rendjét, így a keletkező szabályozó rendjét is. Ezért gyakran szükséges a
-optimális szabályozókat helyettesíteni egy redukált rendű szub-optimális szabályozóval.