[1] B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice Hall, Englewood Cliffs, New Jersey, 1971.
[2] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, Englewood Cliffs, New Jersey, 1979.
[3] V.I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag, 1988.
[4] M. Athans and P.L. Falb. Optimal control. McGraw-Hill Book Company, New York, 1966.
[5] G. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith. -analysis and snthesis toolbox. The Mathworks Inc., 1993.
[6] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and fault-tolerant control. Springer, 2003.
[7] J. Bokor and G. Balas. Linear parameter varying systems: A geometric theory and applications. 16th IFAC World Congress, Prague, 2005.
[8] J. Bokor and P. Gáspár. Irányítástechnika járműdinamikai alkalmazásokkal. TypoTex Kiadó, 2008.
[9] F. Csáki. Szabályozások dinamikája. Akadémiai Kiadó, Budapest, 1966.
[10] F. Csáki. Fejezetek a szabályozástechnikából. Állapotegyenletek. Akadémiai Kiadó, Budapest, 1973.
[11] R.C. Dorf and R.H. Bishop. Modern Control Systems. Addison-Wesley Publ. Comp.Inc., 1984.
[12] J.S. Freudenberg and D.P. Looze. Frequency domain properties of scalar and multivariable feedback systems. Springer-Verlag, 1988.
[13] A. Isidori. Nonlinear control systems. Springer, 1995.
[14] A. Isidori. Nonlinear control systems II. Springer, 1999.
[15] S.M. Joshi. Control of flexible space structures. Lecture Notes in Control and Information Sciences, Springer-Verlag, 1990.
[16] T. Kailath. Linear systems. Prentice-Hall, Inc., Englewood Cliffs, 1980.
[17] R. Kalman. On the general theory of control systems. Proc. 1st IFAC Congress, Moscow, 1:481--492, 1960.
[18] R.E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering, 82D:35--45, 1960.
[19] L. Keviczky. Combined identification and control: Another way. Proc. of the IFAC/IFORS Symposium on Adaptive Control and Signal Processing, Budapest, pages 13--30, 1995.
[20] L. Keviczky, R. Bars, J. Hetthéssy, and Cs. Bányász. Szabályozástechnika. Műegyetemi Kiadó, Budapest, 2006.
[21] L. Keviczky and Cs. Bányász. Iterative identification and control design using K-B parametrization, in: Control and complex systems, eds: K.J. Astrom, P. Albertos, M. Blanke. Springer, London, pages 101--121, 2001.
[22] U. Kiencke and L. Nielsen. Automotive control systems. For engine, driveline and vehicle. Springer, 2000.
[23] B. Lantos. Irányítási rendszerek elmélete és tervezése. Akadémiai Kiadó, Budapest, 2001.
[24] L. Ljung. Parametric methods for identification of transfer functions of linear systems. in Advances in Control, Ed.: C.L. Leondes, Academic Press, New York, 1986.
[25] L. Ljung. System identification: Theory for the user. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
[26] Maciejowski. Multivariable Feedback Design. Addison-Wesley, 1989.
[27] D. McLean. Automatic Flight Control Systems. Prentice-Hall, New York, 1990.
[28] N.S. Nise. Control Systems Engineering. The Benjamin Cummings Publ. Comp., Inc., 1995.
[29] K. Ogata. Modern Control Engineering. Prentice-Hall, Englewood Cliffs., London, 1984.
[30] P. Rózsa. Lineáris algebra és alkalmazásai. Tankönyvkiadó, Budapest, 1991.
[31] M. Safonov, A. Laub, and G. Hartmann. Feedback properties of multivariable systems: The role and use of the return difference matrix. IEEE Transactions on Automatic Control, 26(1):47 -- 65, 1981.
[32] S. Sastry. Nonlinear systems: Analysis, stability and control. Springer, 1999.
[33] R. Tuschák. Szabályozástechnika. Műegyetemi Kiadó, Budapest, 1994.
[34] I. Vajk. Identification methods in a unified framework. Automatica, 41:1385--1393, 2005.
[35] T. Vámos and J. Bokor. Bird's eye view on control theory - motion, spaces, transformations. Annual Reviews in Control, 21:1--11, 1997.
[36] G. Zames. Feedback and optimal sensitivy: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2):301--320, 1981.